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ABSTRACT

Optimal control algorithms that use an adaptive non-recursive

digital filter model for on-line closed-loop blood pressure regulation

have been developed. This Automatic Therapeutic Control System was

designed specifically for the regulation of physiological systems, but

the design assumptions are such that it should prove very useful for

a much broader class of control problems.

An Adaptive Model Control system has been developed, the analysis

of which is presented in two parts: (1) the real-time adaptive model

synthesis procedure, and (2) the optimal forward-time controller.

The Adaptive modeling process is accomplished by the rapidly

converging O-LMS Algorithm. The conditions necessary to guarantee

convergence for deterministic inputs are presented. Mean-Square Error

bounds are presented for zero mean and nonzero mean additive-output

noise systems and also for the low-order approximation problem.

The optimal forward-time controller is described. It not only

makes efficient use of the mathematical properties of the non-recursive

digital filter model (that is, the filter gains and the state of the

filter), but also meets the time and memory constraints of a mini-

computer used on-line for this control problem. The future control

inputs are determined by a doubly constrained quadratic function which

is solved to minimize the mean-square control error.

The results of an experimental run are included in which these

algorithms were used to regulate the blood pressure of a dog that had

been artificially placed in a hypotensive state (shock). The results
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of this and similar experiments have been very successful from both

an engineering and medical point of view, and if the necessary arrange-

ments can be made with the local hospitals, this system will be used in

the near future as part of an intensive care unit.
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1. INTRODUCTION

A. AUTOMATIC THERAPEUTIC CONTROL SYSTEMS

Therapeutic is defined as that which is related to the branch of

medicine dealing with the treatment of disease [1]. Thus, an automatic

therapeutic control system is any control system which deals with the

treatment of an illness, sickness, interruption or perversion of function

of any of the organs in an automatic (closed loop) manner. The automatic

therapeutic control system proposed in this paper, an adaptive model

controller (see Fig.7), was used for the treatment of shock (hypotension).

For this problem a pressure-elevating drug was used to regulate the

average blood pressure of a dog which had been placed in a controlled

state of shock.

Another promising area of application is anesthesiology. Many of

the chemicals used in anesthesia, both in the liquid and in the gaseous

form, are sufficiently fast acting to utilize fully this control system.

This system for quickly controlling the degree to which a patient is

anesthetized would thus be a great help to an anesthesiologist.

B. THE CARDIOGENIC SHOCK PROBLEM

It is estimated that in the United States alone 250,000 lives are

lost annually because of cardiogenic shock [2,3]. The best treatment

for this deadly problem is still disputed, and it is claimed that cardio-

genic shock still defies the cardiologist's skill 80 to 90 per cent of

the time.

Thus, there is a need for new and improved ways to deal with cardio-

genic shock. One possible method of treatment is to regulate automati-

cally a patient's blood pressure by administering drugs with a control
1



system. The engineering control problems associated with this approach

are what we are concerned with in this paper.

The methods of treatment for cardiogenic shock can presently be

broken into two opposing schools of thought: those who prefer drug

therapy and those who prefer mechanical intervention, particularly with

the intra-aortic balloon pump. We are concerned with the drug therapy

approach, which can be broken into three schools of thought [2].

"The vasopressor school, which is becoming popular again,
emphasizes the need for agents which increase coronary per-
fusion pressure. But proponents of vasodilators contend
that the major need is to relieve intense vasoconstriction.
This mode of therapy reduces the work load of the heart and
redistributes blood flow to all areas of the body. Still a
third group emphasizes the need for increased myocardial
contractility to restore cardiac output."

Regardless of the approach, the objective is to take therapeutic

measures early enough to prevent irreversible shock from developing.

Irreversible shock can be described as a state of positive feedback

where the failure of one function causes still further failure of another

function within the same control loop [4,5]. Figure 1 is a simplified

block diagram of some of the different types of feedback that can lead

to a progressive state of shock (irreversible shock)[5].

We again remind the reader that this paper is concerned with de-

scription and analysis of a control system which regulates blood pres-

sure; we do not address the larger problem of what therapy is best for

cardiogenic shock.

C. THE COMPUTER LABORATORY & OPERATING ROOM FACILITIES

The computer laboratory used in this research is located on the

Stanford Campus in the Durand Laboratory, and the operating room is

2
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located in Palo Alto at the Palo Alto Medical Research Foundation. A

voice grade telephone line is used as the data link between the two

facilities (see Fig. 2). This choice of data link will make it very

inexpensive and easy to reach patients in the intensive care units at

any of the local hospitals.

The primary hardware components are shown in block diagram form in

Fig. 3. In the operating room, the strain gauge and drop master" are

commercially available items, while the voltage-controlled oscillator

(VCO) and drop-rate DETECTOR were designed and built at Stanford. The

acoustic couplers and the HP-2116B computer system are commercially

available items, but the frequency-to-digital converter (FDC) and the

drop-rate ENCODER were also designed and built at Stanford.

The frequency band from IKHz to 3 KHz is used for transmission of

the instantaneous blood pressure. The remaining channel space of the

telephone line (500 to 1000 Hz) is used to transmit the encoded drop

rate commands. A tone-burst code is transmitted each time a drop of

drug is required.

The HP-2116B computer is a mini-computer with a 16,000 word (16

bits per word) memory and a 1.6 microsecond cycle time. In addition to

the major components shown in Fig. 3, this computer system has a real

time clock which is required for scheduling data gathering, data process-

ing (the forward time calculations and adaptive algorithms) and data

output.

A drop master is a machine which releases one drop of fluid in response
to either an internal timer or an external command.

4
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Fig. 3. Block Diagram of the Primary Hardware Components.

Interested readers are referred to references [6-8] for a more com-

plete description of the biomedical engineering problems and requirements

associated with patient monitoring and automatic therapeutic control

systems.

D. THE ADAPTIVE MODEL CONTROLLER

When designing controllers for real physical systems, we can cope

with only those problems that can be foreseen and allowed for in advance.

Thus, the idea of an adaptive control system which can compensate for

the time-varying and nonlinear aspects of a system is very attractive.

The adaptive control principle in essence consists of three things [9]:

1. The definition of an optimum condition of operation.

2. The comparison of the actual performance with the desired
performance.



3. The adjustment of system parameters by means of closed-
loop operation so as to drive the actual performance
toward the desired performance.

One of the simplest systems which employs these principles is the

adjustable compensator controller (see Fig. 4). The adaptive filter is

adjusted to give, say, a minimum mean-square error. The problem with

this system is that the desired response d which is needed ti) adapt
J

the filter is unknown. Note that if d. were known, then the adaptive
J

filter would be unnecessary.

A more workable adaptive controller is the inverse-model conýtroller

(see Fig. 5). Under the appropriate conditions this system is very use-

ful [10]. Its major shortcomings are due to the fact that we must have

an estimate for the delay Z-N and the inverse model I must be well

defined.

Another approach is the feedback model controller (see Fig. 6)

which uses a faster-than-real-time closed-loop model of the physical

system to adapt the compensator. While this is certainly attractive

because we can exercise the upper loop in order to adapt the compensator

without disturbing the physical system, the problem lies in the fact

that the mean-square-error performance function is knownto be irregular,

non-parabolic, and containing relative optima [113.

The problems inherent in the above-mentioned systems are overcome

by the proposed Adaptive Model Controller of Fig. 7. In this system the

identification process is achieved by the rapidly converging CY-LMS

Algorithm, and the adjustable controller is a faster-than-real-time

2
forward-time calculation which minimizes the squared error (r - y.)3 .1

In this system the control is optimal in a squared-error sense if the

7
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adaptive model has converged. Thus, in practice the system is run open

loop until the adaptive model has converged, and then the loop is closed

through the forward-time calculation.

We will use the following notation to distinguish between scalar,

vector and matrix variables:

1, a variable with no underlining is a scalar,

2. a variable with a single underline is a vector, and

3. a variable with a double underline is a matrix.

For example (see Fig. 8) x. is scalar input at time j, and x is3 -3

the vector "input" at time j.

In addition, we will adopt the convention that the weight vector

w. (see Fig. 8) is -if length N.

The convergence proofs given in section 2 assume that the physiological

system is time-invariant.



2. REAL-TIME ADAPTIVE MODEL SYNTHESIS

A. WIDROW-HOFF ALGORITHM (cz-LMS ALGORITHM)

The theory of least-mean-square error filter design has received

a considerable amount of attention in the last two decades. The theory

has been extended from the problems of filtering and prediction [12] to

include those of system identification, process control, and pattern

recognition. The Widrow-Hoff Algorithm [13] (see Fig. 8.)
Iz

j+l =w + x (2.1)

where

T
c. =y. -x w

3 3 -i-iJ

was originally proposed for use in systems where little or no a priori

statistical information is available and where memory size and computa-

tional speed are limited. The theory of the ci-LMS Algorithm and its

many variants has been pursued diligently during the last decade [14-28].

But the behavior of the a-LMS Algorithm in the presence of highly

correlated or dependent inputs has not been analyzed. The previous

methods of proof basically required that E[xjx] be nonsingular,

and that the sequential input vectors be uncorrelated. The need to

alleviate these assumptions is obvious in any system where there is a

real-time identification utilized in a larger control process. N

The behavior of the ox-LMS Algorithm when subjected to deterministic

inputs is the thesis of this section. Motivated by the conditions on

deterministic inputs discovered by Spain [29]for identification and

modeling of discrete linear systems, we are able to derive a related

10
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Non-recursive Adaptive Filter.

condition which we call an "N-dimensional input sequence". The method

of proof was motivated by Kailath's innovations approach f30,33] in which

the input is transformed into an orthogonal sequence of vectors which

represent the 'new' information at each instant of time. The proof is

then generalized to include the effects of additive output noise and

high and low order approximation.

B. STABILITY OF THE c•-LMS ALGORITHM

In order to gain some analytical insight as to how the Ct-LMS

Algorithm behaves when used as an identi~fication process, let us

:i]



represent the physiolog-ical system to be modeled by a non-recursive

discrete filter G of length N. (See Fig. 9.) The motivation for

DRUG

FLQW
RATE

A Zj Z4 Z-1 Z-1

[ 1 93  AVERAGE
•. i .BLOOD I FPRESSURE

Nx

Z-1 Z-1 Z-1

WI Y

wi i Relacdb tsIple-ipne ADAPTIVE

Fig. 9. Idealized System Where the Physiological System
is Replaced by Its Impulse Response.

this representation is twofold: First, the filter gains gi,i=l,2,...N

are equal to the impulse response of the physiological system at times

-where t equals the time delay between each filter tap. Thus,

from our experimental data we choose N and A such that (N-l)A

equals the total time of the impulse response and such that A is small

enough to give a "good" piecewise-linear approximation to the continuous

impulse response. Second, this representation gives us a one-to-one

correspondence between the elements of the filter G and the elements

of the weight vector w. Thus, the modeling error at time j, E.,
--3 1



can be written as follows

TCj = y -x aj•

T T
. 0 - x. w.-- J-- --J--J

x (G-w.) (2.2)-J - -3

As a worst-case analysis, we would like to know the worst that can

happen to G-w. when x. is arbitrary, i.e., is the cx-LMS Algorithm

stable? First, we consider the degenerate case of x. 0 0. By defini-
--J

tion, if x. O, then (2.1) is w =w.. Note also that if x. O,
-1 --J --j

then by (2.2) c. = 0. The general result is that without making anyJ
assumptions about the input, we have:

Theorem 1. Given a non-recursive filter G of length N and any

input x, then the next weight vector w obtained by a-LMS

adaption (0 < 0 < 2) is such that

w ~-• G1 W51j -G1 (2.3)

where equality holds iff c. = 0.
3

Theorem 1 is proved in Appendix A.

Theorem 1 states that no matter what the input x is, the distance-3

between w. and G is non-increasing. Thus, referring to Fig. 10, we

can see that the tip of the weight vector w ±1 will always be contained

inside some hypersphere of diameter .j -G1 centered on the tip of G.

In other words, (2.1) is stable (convergent) for 0 < -I < 2.

13
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C. UNBIASED CONVERGENCE

Before introducing the definition of an N-dimensional input

sequence, let us examine some of the more obvious properties of the

algorithm (2.1). Take the case where a = I and the input sequence is

T

- - [too... o]'i
x 2 jio [01 . 01

x4=[0 ... 001]

T

"-2 -- [tooo ... o]

If
then it is easy to show that given any finite w we have w = lotr

all j > N + 1. Furthermore, if Ca A 1 but 0 < a < 2, then it is not

lim
hard to show that J-4 --w G.

There are many such examples that demonstrate the unbiased conver-

gence of (2.1), but what can be said about an arbitrary input sequence

fx ? So that we may deal with such a question in a rigorous manner,
-Jo

we let x. be the present input vector, an arbitrary vector in an-j

Euclidean space E , and let S be a subspace containing the previous

N - 1 vectors, x. 1 ,x. 2 . Then the present vector x.
3--j --3- " --- N+1 " -J

can be uniquely represented in the form [34]

+: J

where

S and xKS

15



We can now make the following formal definition of an N-dimensional input

sequence;

Definition. An N-dimensional input sequence is any sequence of vectors

(X. r where a sequence member is
0

A = x.

xi

XjN+lj

such that (1) the sequence of vectors (x.)JN has N linearly

independent element vectors for all j > 2N, and (2) there exists a

0 < b < I such that

q 2> for all j > N

The restrictions imposed by this definition will be relaxed in a subse-

quent development.

Consider condition (1) with N 2. We have a matrix, B., say,

where

At time j, the scalar x. is the only new input value, and if detB.40
3 =3

then we must have one of two cases: if x z0 then x. is arbitrary,
j- 2  

3

else 2

x

3 x j-2

16



Condition (2) excludes a set of values x at time j which would prod*uc.(.,
NJ

vectors x* in EN whose boundary defines a circular hypercone centered

at the origin with its axis perpendicular to S. To see this note that

22 w

i ll 2 + -•' j l2 -

and thus

A constant input vector is f3rbidden if we are to satisfy the

definition of an N-dimensional input sequence. It is obvious that we

wish to exclude such a sequence, for one cannot measure system dynamics

without perturbing the system. The fact that B. must have rank N
-=j

corresponds to the fact that there are N states in the filter and all

states must be excited to be identified. Equivalently, the filter spans

N
E therefore B. must have N linearly independent rows if it is to

=j
N

span E

Theorem 2. Given a non-recursive filter G of length N, and an N-

dimensional input sequence (xjo the weight vector w.w obtained

by 2-LMS adaption (0 < (a < 2) converges to G as j _* o.

Theorem 2 is proved in Appendix A. The method of proof is illustrated

in Fig. 10 for N = 2. The input vectors x. are operated on in the-3

convergence proof in groups of N by a transformation which yields

•_ =x. - x.
.j -.3 --J

such that _]j is orthogonal to all N - 1 previous x. 's in the group.

17



This is a Gram-Schmidt transformation which restarts every time N

vectors have been processed. Thus, the quantity 1 -ill at any time

j is bounded above by the convergence due to the *]j's. (This follows

from Theorem I and the orthogonal nature of the 3j's.) The _j's are

the "new information" and are all non-zero due to the fact that by defi-

nition=B , has rank N. Note that the closer 3j is to x, (the

closer 5 is to 1) the faster w. will converge to G. For the
-- j

example considered in Section 2.C, n = x* and • = I because the-j -3

input sequence was itself orthogonal. The minimum rate of convergence

is determined by the size of 5.

It is of interest to note that the assumption of an N-dimensional

input sequence (x.) is more restricted than is necessary to guarantee

unbiased convergence. Assume that we do have M- N (where M > N)

dependent vectors in the sequence ( xo) By Theorem I we know that
-3 0'

11w - G is non-increasing. Also, when a dependent vector x is used

to adapt the weight vector w., the upper bound defined by the 3's--3

(see Fig. 10) does not change because is equal to zero. Thus, the

upper bound does not change for M - N adaptionsbut decreases normally

for the remaining N adaptions. Therefore, the first part of the defini-

tion of an N-dimensional input sequence can be modified to read ... "such

that there exists a finite M_ > N and the sequence of vectors X.j i-I

has N linearly independent element vectors for all j > 2M." ... If we

look at any group of M input vectors we are guaranteed that

1W -w G < `- G-1. Since M is finite, this occurs an infinite.- j +M 1-

number of times and we have

lim w.= G
-0

18



D. CONVERGENCE OF THE ADDITIVE-OUTPUT-NOISE SYSTEM

It is hard to imagine a real-world process that does not have some

form of additive output noise. In addition, one inevitably introduceýs

noise when trying to make measurements. The measurement noise can be

reduced but it is never zero. For the case of additive- output noist,

n, we have
y x G+ n..1 -3- ci

and thus (2.2) is

T
c. x. (G-w.) + n,

j -0 - -j 3

Because n. is a random variable it is necessary to look at the behavior

of the expected value of the weight vector w as j- . To start

with let us consider the system where the noise process is zero mean:

Theorem 3. Given a non-recursive filter G of length N with additive

2
output noise (iid, zero mean and finite variance c ) and an N-

dimensional input sequence (x., then the expected value of the

weight vector w. obtained by a-LMS adaption (0 < rx < 2) con-
-j

verges to G as j-. c and an upper bound for the mean-square

error is

T 2 - -2 Xx3A2. x ( - G)] _< 1
T - )} XNin.'2, ,

Theorem 3 is proved in Appendix A.

Thus given a zero mean noise source which is uncorrelated with the

input sequence fx.), the expected value of the weight vector wJ

converges to G as j _ . In addition we have that the ,MSE (mean

* square error) is a function of the adaption coefficient r. Thus t he
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smaller r• is the smaller the MSE will be, but at the same time the

slower the rate of convergence will be. In practice, a is made close

to one during periods of initialization or rapid changes in the physio-

logical process, After these periods a is then reduced. For the

experiments described in Section 4, a was made as small as 0.2. Note

also that the MSE is a function of the maximum and minimum input vectors.
2.

The fact that the bound is divided by ,inji2 is not unreasonable.

Consider the example where we have a zero input and a non-zero output

(due to the noise source). In this situation the MSE is not well defined.

Depending on the system, this may be considered an undesirable

feature. In addition there is little reason to believe that the physio-

logical systems one may want to model have zero mean additive output

noise. To handle bias in the observation noise it is necessary to intro-

duce a non-linear system.

Definition. The augmented weight vector w' is the vector--J

S 1w

w2

w N

at time j, where the augmented input vector x1 is
-j

-3 
j

The new weight w is referred to as the bias weight because under
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suitable conditions its expected value w converges to the mean
0

value (bias) of the process. Note that the resulting model is non-

linear,

N
W\ X X + wYj = k J-k+1 0

k=1

Now we have the following result:

Theorem 4. Given a non-recursive filter G of length N with additive

output noise (iid, mean 1 and finite variance 2) and an N-

dimensional input sequence (,j.o then the expected value of the

augmented weight vector w' obtained by a-LMS adaption (Q<a<2)--3

converges, namely w. converges to G and w converges to

as j -4 o , and an upper bound for the mean square error is

2 r 4 "llx mo lt
lim FT 12 4GNI 2.1 x.(w. -G) <
i - ( G -J (2 - .1-- )

Theorem 4 is proved in Appendix A.

The augmented a-LMS Algorithm thus has the very nice property that

lim wo = and lim w = G. Furthermore, we notice that the norm
SCOJ 

-

squared of the minimum input vector is one. Thus, for all finite input

vectors x., the MSE is finite. In the bound for the MSE, a2 has-J

been replaced by its upper bound of 4. The author conjectures that the

2
MSE bound is still a function of a. The difficulty of working with a

nonzero mean noise arises in the proof because the cy-LMS Algorithm is

not a linear process , and the mean 5 is not known a priori.
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E. CONVERGENCE OF THE HIGH AND LOW ORDER MODELS

From both a practical and a theoretical point of view it is impor-

tant to know how the u-LMS Algorithm behaves when the length of the

model is not equal to the system being modeled. Experimentally it is

unlikely that the length of the impulse response, G, will be known

exactly a priori. Theoretically it is advantageous to make N as small

as possible because this reduces the USE bound. The usual rule of thumb

is to make the total delay time of the tapped delay line of the adaptive

model at least as long as or longer than G, in which case we have:

Corollary 1. Given a non-recursive filter G of length M < N and an

N-dimensional input sequence ox then the weight vector w.

_j 0

obtained by --LMS adaption (0 < a < 2) converges to G as

j oo where

0

0
N-M zeros

L0

Proof of Corollary 1.

Since the addition of feedforward terms of zero gain does not

affect the output of G, substitute e for G in the proof of

Theorem 2.3

This completes the proof of Corollary 1.

Thus, when the model is of higher order than the physiological

system, the primary effect is increased MSE.
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In the event that the model is of lower order than the physiological

system, the problem is much more complicated. Decompose the filter G

into two parts G and G where G is the first N elements of G

and G is the remaining elements (see Fig. 11). In this way y =xi -

and y. = xdG so that (2.2) is given by

T7 TAs

cj w + xd G

Now unless we can make some statements anout the long term behavior of

the input sequence

x d . 0

we cannot say what lim w. is equal to. To see this we make the

following construction. Suppose we interpret y. as being an additive

output noise, then y. must have a stationary mean and variance if

Theorem 4 is to apply. While this may be the case for some systems,

this is certainly not required in the definition of an N-dimensional

input sequence. But if the input sequence can be modeled by a stochastic

process and if x. and xd, are uncorrelated, then Theorem 4 applies.
--

This being the case, it is advisable to design the identification

system to be as long as if not longer than the maximum possible length

of the impulse response of the physiological system.
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3. FORWARD TIME CONTROLLER

A. THE MINIMIZATION PROBLEM

The problems in optimal control are typically associated with

dynamic systems evolving in time where the systems are described by a

set of differential equations [36-39], Mathematically formulated, the

determination of the extrema (optimal points) of these functionals is

a problem in the calculus of variations. However, in the case of the

adaptive model controller of Fig. 7, the dynamic system is modeled by

T
Y= 4 X W (3.0)

This mathematical formulation (parameterization) of the dynamic

system in conjunction with the assumption that the reference input r

is known for finite future time leads to a function minimization algo-

rithm which does not use the calculus of variations. The development of

this algorithm is the thesis of this section.

Let L = integer constant

N = the number of weights

j = the current time, and

T = LN + j

The reference input ri and a set of constraints a.. bi, ci & d.

are assumed to be known for all i = j+l, j42, ... T. Thus the problem

is to determine x. for all i = j+l, j+2, ... T such that1

T

(Y - r 1 ) 2  (3.1)

i=j+l
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is minimized subject to the constraints

a, Y, b-

c i x i di

where

ic= l WkXkl i = j+l,j+2, .. T
k=l

The blood pressure (output)constraints a. and b. are needed
1 3

because there is a minimum value above which the blood pressure must

remain at all times (note that a. < 0 has no meaning in this problemr)
I

and likewise, there is a maximum value of blood pressure that is safe

for the patient. The drug rate (input) constraints c. and d. cor-
1 1

respond to the fact that there is a minimum and maximum drug flow rate.

The minimum flow rate is that rate which will keep a blood clot from

forming in the catheter. If a blood clot forms, the catheter must be

disconnected from the drug supply and flushed to clear the blood clot.

The maximum flow rate is determined by the maximum amount of fluid that

can be added to the blood without causing undesired side effects.

The minimization of the squared control error (3.1) is used for two

reasons. First, it produces very satisfactory control, and second, it

allows a considerable reduction in the mathematical complexity of the

forward time calculations needed to achieve closed loop control. The

forward time control algorithm described here is thus optimal in a

minimum squared error sense with respect to "controlling" the discrete

non-recursive filter model. The optimality of this approach carries

over to the entire control system when the model has converged.
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Before we begin the solution of the minimization problem, it is

instructive to discuss some of the overall system requirements and model

properties which have been used in choosing the most desirable algorithm.

Notice that this representation of the physiological system (the "plant"

to be controlled) gives us not only a simple formula for determining the

output given the input, but it also gives us the state* of the model.

This is very important in achieving control because we are dealing with

a feedback system and must be able to control at all times. That is,

we do not want to wait until the transients from the last correction

have died out before we make the next correction.

The overall system requirements arise from the need to run this

model reference system in real-time on a mini-computer. These require-

ments are:

1. The algorithm should make efficient use of memory since the

total amount of memory available for this part of the system

is small (3-4K words).

2. The number of arithmetic operations should be minimized be-

cause these operations are not very fast on mini-computers and

there is a limited amount of time available.

3. The algorithm should calculatc the solution iteratively. An

algorithm which obtains an exact solution in T seconds is 14

useless if less than T seconds is available, while an algo-

rithm which iteratively refines the initial guess has an im-

proved "solution" at all times.

The model is a non-recursive digital filter; therefore the state of the
model is precisely xi.
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4. The algorithm should converge rapidly and in a finite number

of steps even when many constraints are active.

B. THE FORWARD TIME CALCULATION

The solution of (3.1) is divided into four steps (computation

phases). In this way the "solution" of (3.1) is refined in proportion

to the amount of processing time available at time j. Physiological

systems quite typically have some amount of transport delay. This means

that several of the first weights along the non-recursive digital filter

model would be equal to zero. In practice these weights are not exactly

equal to zero, but instead vary by some small amount g about zero (see

Table 1). This is handled experimentally by labeling all jwil f < as

being zero. The first nonzero weight w is then referred to as the

first weight of w. where w. now has N-j elements. At the same
-3 -3

time, the model is iterated forward j cycles. In this way the model

is transformed into an equivalent system with no delay, and the new w1

is not equal to zero (this is needed because we will have to divide by

wI to get the solution to (3.1)).

The first numerical task is to get a feasible* solution as fast as

possible (recall that the amount of time available for the solution of

(3.1) is not known): This is done by recognizing that if the plant is

stable then it will have a steady state output which is equal to r..

We can then use (3.0) to find a feasible input. Thus, we have

Phase I:

Find the steady state solution x and then let x. = x for all55 1 SS

i = j+l,j+2, ... T. Thus we have

A solution is feasible if the constants are satisfied. Thus x1  is
feasible iff c < X <d. and a- <y <b..

8-
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T

L-N r" i
xi=j+l

ss N

kk=l

This solution is interior to the boundary of the feasible domain,

but it is not likely to be the optimal solution.

Phase 2:

Check to see if the problem can be solved with zero error. Set

2(y2- r = 0 for all i = j+l,j+2, ... T and solve for x :

xi (3.2)

undefined otherwise

where N

ri - Wki-k+l
1ý k= (3.3)

1 1

If xi is undefined for any i then Phase 2 fails and we proceed with

Phase 3; otherwise we have the optimal solution for (3.1) and are done.

Phase 3 is a heuristic procedure motivated by the solutions obtained

using Rosen's gradient projection method (Phase 4). It was found that the

solutions for the optimal drug rates obtained in Phase 4 could be fitted

with exponentially decaying envelopes. Intuitively this is reasonable

because we would expect that after a change in the reference input, the

drug rate would change greatly at first and then settle to a steady state

value. This heuristic procedure we call the "clipped" solution because

the drug rates xi are not allowed to be outside of this envelope. Thus,

the heuristic procedure is that if the drug rate 9. calculated in (3.3)
1
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is outside of the envelope, it is replaced by the value of the envelope

(see (3.4)). (Note that the results of the Phase 2 calculation are direct-

ly usable in Phase 3.)

Phase 3:

Check to see if the "clipped" solution will satisfy the output

(blood pressure) constraints. Solve for x., i j+l,j+2, .,. T until

Yi < a. or Yi > b.

where

A AUB i, x > UB

xi = xi, LE i < ^xi < UB. (3.4)

LB x. < LB.

and where

N

r - WkXi-k+l

x. w

UBi min[di,Uc.]

LB. = max[ci,LC,]

UC. = x + T exp[-I(i-j)]! ss

LC. = x - T exp[-'k(i-j)]
1 ss

where B is defined by

where

T= max xssx -i allowed at time i j
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and

t max x 3 xj allowed at time i -T

If Phase 3 is successful use its results as the initial guess in Phase 1;

else use the results from Phase 1. In order to describe the method used

in Phase 4 it is necessary to formulate (3.1) as a nonlinear programming

problem. Recall that

T
YT. = ±-l-w i j+l,j+2, ... T

or in matrix form

4J+ N "2 1

0

"2 -1

N to bo
• 3..2 optlalizd

0^

CONSTANT

where the past inputs xjN+2 xj are known and the future inputs

xj+1 ... XT are to be optimized. Notice that the upper left hand block

of this matrix can be replaced by a constant vector h, say; thus we have

Yj++1 WI XJ+

Yj+ 2  h J+2 w2 l J+2

YJ+N h ... w2  w1  (3.5)

YJ+N+ .h3 +N+l

T 
0

L T _N V2 '1
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or letting i j + 1 for convenience, and defining the vectors, we

write (3.5) as

- h+ xWI

where

1 C k W kl XJkl K < j + N (3,6a)

0 K>j +N

and

O for M > K

K 0 for K > N and m< - N (3.6b)xm

w +elsewhere

(at time J)

Note that W is in lower triangular band form with bandwidth N, and

that all of the elements on any given diagonal are identical. Therefore

using (3.6b), only N computer words are required to store W instead

of (LN) 2 words. Furthermore, W inverse exists because wI is not

equal to zero and is easily obtained by one front-solve* operation. We

can now construct the following quadratic minimization problem. Minimize

T

(yi - r. )2

where
T-j

Yi = h. -+ l i-j,k Xj+k

When the matrix of coefficients for a system of equations is lower

triangular, the solution is readily found by solving the equations
one at a time from the top down; hence the name front-sol-e.
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and
ri reference input

a, 5 y, -< b,

c. C X, < d,

Define the error vector as

A

i= Wx. - i-h

=x. + h - ri (3.7)

Thus, the parameters to be optimized are

+1 -i.•-i - *-:(i -i1Cr-hi)+W _-:

and the function we want to minimize is

I Tf(z = X(ziZ) (3.8)

where the constraints are now given by

a,- r < zi < b. - r. (3.9a)
-1 -I -- --

and

c- -l(r 1 - hi) < d - 1- (r. - h.) (3.9b)
•-- - - -i -- -i -- - -1

The desired form for the constraint equation in the nonlinear programming

problem is
Tnz > k 1,2, 4LN
-k-i- k4
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where
T0k =1 kI 1,2, ... 4LN

Rearranging the constraint equations (3.9a) and(3.9b) into this form

we get(withuut normalizing)

a r
I > a- - r.

-• -b. t r.
-1

-1 (3.10)

c-W (r -h h)- = -- i -i

(J1-d + WC(r.- h.)

L J L -i-: -1 -

The motivation for this formulation is now apparent because we have

that the gradient of f is given by

g = grad(f(z.)) = z.

and the Hessian matrix of second partial derivatives of f is given by

G~z1) - I (3.11)

One can now apply Rosen's gradient projection method. In general,

this method gives linear convergence since the direction of steepest

descent is taken. However, in our case, where the Hessian is I, the

convergence is quadratic, and hence the minimum of f(z.) in any given
-- I

subspace can be found in one step. A general description of Rosen's algo-

rithm for the special case where G is the identity matrix, is given in

Appendix B. A programmed version of Phase 4 is given in Appendix C.
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Phase 4:

1. Using (3.7) we set

0a =I x + h -r.
-- = -i -1 -1

and
0

S= -Z

k thwhere z denotes the error vector at the k iteration in solv-

ing for the optimal z., and h. is given by (3.6a). It is
-1l --1

0known from previous calculations in Phases 1, 2, &3, that z

is feasible (all constraints are satisfied) thus, the number of

active constraints q is initially equal to zero. Also compute

IC- and I which is equal to the right hand side of (3.10).

As a matter of notation, we will let

N (qtfl'f2' .. -nq=q 2q

and P QN where QTQ = 1 and P is upper triangular.=q • _qC1 - =q

2. Determine

* T iniICf in=Jn nT__ jn civ
min> jn T j constraintsl
>0 n. sI

jn- -jn-j

3. If 7$ > 1 then go to step 6, else add the corresponding

column n to N and form
-jn =q

Ip 'P = +I
=q+ 0

L P
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where
PT NTSP ) N n
=q - =q -jn

and

p T ( 7)T 1

Set

q =q+ 1

Snd

k+- k
Z =Z + S

4. Compute the vector (I where

PT=q q
--q

and

Pd=q -
Let

min AEactive ]

5. If 0, then let s -Zk + N d and go to step 2, else

delete che corresponding column from N , update P set=q =

q = q 1 and go to step 4.

6. The optimal input is now given by

Irk
-i z + s + rl hi

I. W 1 1

If x is desired it is given by

-1 zk
x.= 1 ( k s + r h)

This completes Phase 4.
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By making use of the speci ,1 forms that some of the vectors and

matrices have, we have th. the storage requirements are as follows:

QUANTITY MEMORY LOCATIONS

S~N

S~2LN

N LN
=q

p LN(LN +1)
S~2

7 NONE

n, NONE
-jn
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4. EXPERIMENTAL RESULTS

A. OPEN LOOP RESPONSE

The first step in implementing an adaptive model controller is to

obtain open loop response data. This is necessary to find out if the

physiological system satisfies

y(t) = F(x,y,t) + n(t)

where F(.) defines a linear deterministic system and n(-) represents

a noise source. If F(.) exists, then the adaptive model controller can

be used. We determine N and Z (see Section 2.B) by measuring the

open loop step response and then solving for the impulse response. In

our experiments on dogs this is accomplished by the use of a vasodepres-

sor agent, Arfonad (trimethaphan camsylate) which produces a controlled

state of hypotension (shock). Arfonad is primarily a ganglionic blocking

agent which has the effect of opening the dog's blood pressure control

loop. When the dog is in this condition, the effect of a vasopressor

agent such as Levophed (l-norepinephrine) is easily measured. Figure 12

shows the effect of a step change in Levophed on the average blood

pressure. The two step responses in Fig. 12 were taken sequentially on

the same dog with the time between steps being about twenty minutes.

Using this data it was decided that we should set N = 20 and A = 5

seconds. These values for N and A have been satisfactory for all

the dogs that we have run on this system.

Since we know that w will converge to the impulse response G,--3

we would like to know what G would give these step responses. Let

I (t) be the input and 0 (t) be the output; then if the input step

38



14.5

DRUGRATE

(DPM)

7

S150-

•: 140

w 133
I'Y i I- a • -. ,

p .p

w

,.0 140--
0
_J
m 130

0 50 100 150

TIME (SEC)

Fig. 12. Step Responses to Levophed.
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was from A to B, the normalized input I2 (t) is

I (t) - A

If the output changed from C to D then the normalized output is

0 (t) - C

02(t), = iB- A

By looking at the data only at the times A, 2,/, 3A, ... , we have

that the elements of G are given by the iterative equation

g1 = 02 (Q)

and

gi =0 2(iA) - 02(i- l)A) i = 2,3 ... , N (4.1)

The result of applying (4.1) to the step-response data shown in Fig. 12

is plotted in Fig. 13. A dominant feature of this data is the transport

delay which is about fifteen seconds. This G or the weight vector

from the previous experiment is used as the initial weight vector W

when starting a new experiment. In practice, the identification process

is run open loop until a good model has been formed. When the MSE is

small, the loop can then be closed for automatic control.

B. CLOSED-LOOP RESPONSE

The instantaneous blood pressure was sampled every 100 milliseconds

and then averaged over a 30-second period. The adaption and control

cycles occurred every 5 seconds. The first 30 to 45 minutes of the

experiment were typically used to calibrate the data link and to perform

open loop control to verify that everything was functioning properly.
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Fig. 13. The Impulse Responses Derived
from the Step Response Data.

The evolution of the weight vector v.ith time is shown in Fig. 14

(the normalized weight values are tabulated in Table 1). The successive

weight vectors are plotted off to the right to aid in visualizing the

sequence of weight vectors as a continuous three-dimensional surface.

Note the similarity between this data and the data for G plotted in

Fig. 13. The times at which these weight vectors were recorded are

indicated in Fig. 15a-g as "+" marks on the line labeled

(control error) 2

The input (drug rate) and the output (average blood pressure) are

shown in Fig. 15a-g. In addition, the model output at time ,j + 1 (one

step into the future) is plotted as a cross-hatched line. 'Ehe line
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NORMALIZED WEIGHT VALUES

ELAPSED TIME (MIN)

WEIGHT 0 43 48 55 71 18 1Q9 117

1 ,0014 .0100 ,583 0413 .0427 40384 .0398

2 ,O004 .0100 ,0597 .0464 .0569 .0612 ,0569

3 O0014 .0100 .0597 .0541 ,*654 .0725 .0711

4 .1110 0896 .1408 ,'394 .1522 .1579 1579

5 .3001 927S8 ,3300 .3343 .3499 .3585 .3599

8 ,5690 45477 '5989 .6117 .8330 *6472 .6515

7 1,0000 .g787 1.0327 1.0555 1.0b39 1,1024 1,1110

a ,6771 .6572 .7127 .7b11 .7923 .8208 .8378

d9 #3215 .3030 ,3599 ,4111 ,4609 .5007 ,5263

10 ,0526 .0341 ,0939 .t565 ,2105 ,2589 .2888

11 ,0256 '0100 .0683 .1394 .1977 ,2504 ,2817

12 .0057 .0100 *0654 .1323 '1991 *2518 ,2802

13 *0014 ,0100 ,•26 ,1223 .1963 .2447 .2660

JA M0014 01091 .0583 ,1024 .1906 .2418 .2589

15 *0014 ,;1010 *0526 .0939 11883 ,2376 ,2475

16 ,0014 .0100 ,0469 .0725 .1778 ,2191 ,2304

17 ,0014 .0100 .0370 ,0612 11565 .2091 ,2219

18 .0014 .*085 ,0299 .0526 ,142, .1878 ,1906

19 .0014 ,0085 .0242 .0299 .t351 .1778 .1650

20 .0014 ,0085 .0142 .0254 ,1223 .1522 .1309

T -a b l o L . No R{ , A• L J ' ;I , }'1:iD" \ i • • \ I • ' 1 ) .



labeled (control error) 2 is equal to the average value of (y j- r )2

where the reference input r, (pressure set point) is indicated by a

dashed line.

In Fig. 15a & b one can see not only that the system regulates the

dog's blood pressure, but also the effects of learning due to the step

changes in the reference input. Now, in order to dramatize the inherent

stability of the system due to the continuous system identification that

is occurring, several transients have been introduced. In Fig. 15c & d

the effect of injecting sodium pentobarbital (a general anesthetic) is

shown. This can be considered a typical situation because patients often

require drugs in addition to the ones used by the control system. In Fig.

15e & f the dog's blood pressure regulation is again modified by the ad-

ministration of the gasses Halothane (bromochlorotrifluý-ýroethane) and

then Amyl Nitrite (isoamyl nitrite). Halothane is an inhalation anes-

thetic and Amyl Nitrite is a coronary vasodilator. The reason for doing

this is to demonstrate the speed at which the system can compensate for

drastic short-term changes. A very similar situation occurs in the nor-

mal course of events when the present bottle of Levophed is running low

and must be replaced by another. The time during which no drug is avail-

able can be minimized, but there is usually a detectable difference in

concentration of Levophed between the two bottles. Fig. 15g shows how well

this system regulates when the physiological system is not undergoing

drastic changes.

While the analytical 'problems introduced by a time-varying and/or

nonlinear system are still upanswered, the empirical results shown in

Fig. 15a-g are a strong motivation to continue with this approach for

regulating physiological systems.
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5. CONCLUSIONS

A. SULMARY OF RESULTS

An original system (the adaptive model controller) for realizing

an automatic therapeutic control system has been presented. It was

found that this controller can be realized with a mini-computer, and

that the resulting control is highly satisfactory from a medical point

of view [49].

The convergence of the c-LMS Algorithm has been analyzed for deter-

ministic inputs. Necessary and sufficient conditions for unbiased

convergence were given. These conditions were found to be easy to

implement and to cause little or no deterioration in the control problem.

In addition, the behavior of the adaptive model where the system to be

modeled is of higher or lower order, was presented.

The forward-time controller which gives minimum-squared-error with

respect to the model was described. The minimization was done by a non-

linear programming technique based on Rosen's gradient projection method.

The solution to this part of the forward-time calculation was optimized

so that the amount of memory and computer time required was at a mirtimum.

An actual experiment using this system was included and described.

The results of this and similar experiments have been very successful.

B. RECOMMENDATIONS FOR FURTHER WORK

The use of an adaptive multi-model controller (see Fig. 16) for

blood pressure regulation would be very useful. The additional adaptive

processe.?s present no further complication in the identification part of

the system. However, the optimal controller would have to be modified
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ri OPTIMAL PHYSIOLOGICAL

REFERENCE CONTROLLER SYSTEM •.
INPUT Sooe

xi ADAPTIVE
J MODEL *1

KJ ADAPTIVE YK

MODEL *K

Fig. 16. Adaptive Multi-Model Control]er.

in order to make use of more than one adaptive model. One approach would

be to use the modtl that gives the "hest" input-output relation for the

control, and to use the remaining models as constraints only. Thus,

the physician could not only specify what the blfi,(d pressure should be,

but he could also specify what range of values other body processes

could take on.

An alternate approach would be to extend the work of Installt; r221 tL

decide when a model should be addetd ,r Uruppe2d i.'t,,o the- 1u1( lrC l loo1p.

A controller that looks very promising for handling nonlinear

systems is the adaptive differential-model conitroller (see Fig. 17).

This controller was proposed by Strom [48j who cnjectured that it

should provido superior performance because it models the "local"

behavior of the system. The weakness of this approach is that we must

look at "derivatives" to form the model. In practice, a combination of

the adaptive model controller and the adaptive di 1'erentlal-mnodel con-

troller may prove the most useful. The first would provide a "gloahll"
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MODEL

Fig. 17. Adaptive Differential-Model Controller.

model, while the second would give a ?local" model. The model that is

used to find the optimum input would then be a function of the magnitude

of input.

The inverse-model controller (see Fig. 5) and/or the feedback model

controller (see Fig. 6) might also be useful for controlling physiologi-

cal systems. Comparatively little is known about these controllers, and

hence more work in this area is certainly needed.

I4

54



APMNDIX A

Norms of Vectors and Matrices

The notion of the distance between a vector and the origin is called

a vector norm and satisfies the following properties [24,45]:

(1) ii 0, 0II = 0 iff X 0

(2) llcIx c Id lii, where c is any real number

'(3) IIj_ + y 11 < lliil + Ilyll

We will use the Euclidean norm for vectors

LII (N )/2

Matrix norms have an additional property which is

(4) IA Bi < IAil I1l1

A matrix norm is said to be compatible with a vector norm if for any

vector x

l :hl < hAil xII_ (A.o0)

The Euclidean norm for matrices is

I m n )l/2

-- i=l j=l

which is compatible with the vector Euclidean rnorm. We will make use of

the fact that if A is a symmetric matrix, then

IBAI = max Ii(A) I (A.0)
15
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Prtoofs o'f Theo re , 1 213 4.

SProot of Iheorem•

Given

wi+1 --W + -- x7 r -J

where

C. -- x(G - w.)
3 -3-- -j

subtract G from both sides

(-j+l-- - - (w -) +i .
(wj +1 )(w.-G÷+---x E

premultiplying by the transpose of the above we have

T
(w -G) x. .

2i~
-~ +- 1! (w G)( -G) + a2

T T

x.(w. G x-j 4X.jE.

11i 119 IIx 1
Thus

2

-2 2 (2 - a) .
-j~ 2

>o0 K-xj2
>0

therefore

where equality holds iff C. = 0.3

This completes the proof of Theorem 1.
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Proof of Theorem 2.

By Theorem 1 we know that for any N-dimensional input sequence

fxJ o the distance between wi and G is non-increasing. Geometri-

N
cally this means that we can construct an N-dimensional sphere in E

centered at the point G such that the point w. will lie inside this

sphere for all i > j. Thus one way to show that w. converges to G

is to show that there is convergence along all N of any set of orthog-

N
onal axes of EN. To accomplish this we introduce the operator L.(.) S~3

that operates on the input sequence (x.) in groups of N to produce

sequences of orthogonal inputs (_j. Thus, for j = 2N,3N, ... let

_Xj

XT. e.)i i = j-N+I,j-N+2, j-1j-1
L xEi) j- where

=j-1 T X

x - Y' -nji

Sj-1 T

K [ T -

i=j-N L

-jT -[

S7



Premuluiplying by the transpose of the above we have

T 2

i-+.++i-.._r +j= : - - J+• -'• i1j -12I _j

(W ,)T[.-+-+, [++• - _o2 3
-- l- .12 j 1w i

-3 m 2)T Jc ILa 2-J

2 GTI

-(W[.+ L J G)I (W. -)

+ CG-[(w. ] T (w - G)((A,1)

-~ 
2c~w

211 112 _j 1

non-negative definite
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2
Now looking at 2(2 and 2r we see that

2
22 > a2 for 0 < a < 2

Thus the second term in (A.1) is always > the last term. Therefore

T 1 12

112i- < Ci nj- (w -G)

where equality holds when x. = 0. The convergence due to the (L,}'s-j

will thus form the desired upper bound. To find this upper bound re

need to look at the convergence due to (.i] after N adaptions.

Thus keeping tabs on only the convergence due to the new information at

each adaption, we have

T]

(W .- =r 3Aj4i~I~ (w. -G) -0.2

If+ jj2j J12 --

LlJ+!AJ+l 
_ _

(_wj2-o = HDj+t [2 A-~ G

lix 11 . ( j ,2 - - - j~

where

0. [ terms involving x. as in (A.1)]
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(w j+2 T))=I-C{qj1q~ Jq (W.- G) -

2I+

S-j+N2 .w - - -- 2I+-ii- (w - GOj+ _

Fi,3l -, V _

j+-1 T

(w -G) I(W.-G) -0
-j-iN - 2j N- 1

Thus for all j=N,2N,3N, we have

T I- (T(w. -G) = [-c- a N (w_-G) - 0

- [ i=j-N Ij~iI 2  J-N

Premultiplying by the transpose of the above we have

[ ji Ti 2-•j_•2 -I• j•N 111• j _-ow - _G _ (A.3)
i=j-N-

Now given that 0 < a < 2, we have by iteration of the results of (A.1)

I [ -1 T122 (w< N-G)

-N -wj-N -

and by using (A.00), we have

"ji- T 2

< 
1-26

-- ~i=j-N i2
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Let i

A. = I- 21 (A.4)

i=j-N xi 2

Thus _1 -_11l2 < G112__ -• • ,.
!~~II I~ j~j N 12 = 2N ,3N,

Now to find out what is equal to, we solve for the eigenvslues of

A.. Assume that c is an eigenvector. Then=j--

-31

-j Nj

Thus we find that

aj

and

2CC -_ - iai- --

and since

x<2 -

and

we have that

let

b max
j j-N<i<j-1

Then

-1 < b. < I for all j 2N,3N,
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r

Now we can write

if -', - -Eli 2 < b 2o ljw - _G l 2

2112 < 2 b ! - 2112 < b2 b,2  - Gil 2

12-- -- I2N < -• N2 i) ll

L 2-112 < T 2 = 2N,3N, (A. 5)
1--O

Let
22

bm =lim sup bmax

then

b2  2
max < (I- -Yb)

where b > 0 by definition of an N-dimensional input sequence; and

since

lir 2n
(1 -- 9) =0

n -+c

we have that

lin 2 2
b= b w o G~ 0

Therefore

1iM w =G .6j->0 -j

This completes the proof of Theorem 2.
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Proof of Theorem 3.

Given
Ty.= xG + n,.1 -J- J

we have that

w w+ x x G+n -x T w-j +1 Wj jx2 -J -- j J-

Subtracting G from both sides we have

xjn.
--(W . 2 (A .6 )

Taking the expected value with respect to the noise source we have

(recall that n. is zero mean)
3

=j

(w 2

Now, substituting w for w and w. for w. in (A.2) we have-j+1-+ - -J

j - .CO G .=

This completes the first part of the proof.

G3



Let

D. I-C9 and N.

=j H2  H2

r Then (A.6) is
(wj+ -G (Dw. -G)- (A. 7)

and we have for an N step

-j,2 =3 -j - -~

0 (D (w.-G)- 7.)-7
=3+1 3=-3 - -3 j +

D. D (w -G)- D. 7 7
=j+i=j -j -- =j+l-*1 -j)4-

-j = j3 (w -G1- 2
j-2j+2 _

=. (D D (w. -G)-tD.7-.)
=J+2 =J+1-j -j - =:3+13 -zj+i -j+2

D. 2D0. D.(w, -G) -D. D2 D. 7,-.
=j -~+-3 -3 - =+2=3+1-3 -3+2-3+1- -j+2

Ths or~ Nj+N-1 N-1 ~~~+-- jN A8

(W. -G) = 7 k(w =J~) - fi j-N+j-1-i - -3-'
j- k .- i=1 k =-

=64



Premultiplying by the transpose of the above

i-i 2

IIEJ-~ G-1 D(w -G)
l k=j-N k (J-N

2 2 2
+1 +

+ cross terms involving 7's

Taking the expected value with respect to the noise source, the cross

terms involving 7 drop out because the noise is zero mean, thus

2 2 + _2

k=jH+ 2 gk 2 j-N

< j 2k(!-N --D (wN+l G)

+ = ID _112 2

+ I-ZJ-I + j-112 -j- 2  .4' + DN 2
k=j F+2 -

(A.9)

Now making use of (A,O), we have

fi D2SD_1112, =D 1D 21 2,..• max :I (.O

2 :j-l j ' k=j-N+2
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Therefore

i Ni

Dk' - +N k~lllj-1

Noticing that 
T

= a2 ,2 T C-2 22

2iI j .l.L. 4 112Sj1

we can write

2122 2 N
lljD w -N-2 22 I

-k=J-N k-1 -j-k

Now we have

i-I22

Iw.G12'ZkJ-G + '112

Now referring to (A.3) we see that

kjai 2k(_•_-w G_)

k=J-N -- Nkw

can be written as

i j- N -J - - -_-_

Thus, given that 0 < a < 2, we have

2 2 jN~i~ 2 1~ 2o
weGj < Aj 2 j-j-N-G 2 N 27_
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where A. is as defined in (A.4). Now to get an equation similar to

(A.5) we do the following

~b 11w < 2
11  + 2 wA~l

where

2 2
Ni --

2N bIwNb-Gil
2 + (

22 2 2

11w3N -I < -I!2 21+

2 2 2 2 2 2
< b 2Nwb? o Go- + (b 2NbN+b 2N l)w

2i < 22~- 7N 2N

w. -G b 11w -Gil + I Ib ] j =2N,3N,
-J o k=j+l-i k

Now substituting b for b. we get

max GI 3 2 
+ >

bn x --w --- Ia
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Now since

j -4 CO max

S~and

r m b2  b 2
j~c '-• max = 2

i'=o -b
Smax

S ( 2 ( - n
we have susittn for! -a1d :Sin th% alimit!j- 1

2N

and using the Cauchy-Schwartz inequality we have

and thus

tim [xT(w ._ r)]2 < -1
O-OL-J -3 ( --f x 2__ _ 2 2 -min

This completes the proof of Theorem 3.
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Proof of Theorem 4.

Given T x
wI = .I j Z - T )
-j+1 -j 22 n. -n

we have

i~n w' =w'
W - + -j - (A.12)

where w. is weight zero at time j; or in partitioned formoj[ [.:]
IT

w 1j+l 0w . n

1 ... . ]+[ + i -
_j+_ + ! _xjxj J-wj

Taking the expected value with respect to the noise source we have

x -[ oj1;1 W1. + c •L --
-j+l =-j 2 a -w

Now, subtracting G' from both sides where

I-]
G

we ha-ve

j+l FG')

Now, making the appropriate substitutions for w, G and x in (A.2)

we have

S W. - 2 = 0
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or equivalently

lim

j --* -oj

and

lir w G .u
.j -4 -j

This completes the first part of the proof.
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Letting

i-n

-3 G

n j+l

7- =
0

0

0 ]

we can write (A.12) as follows

[n
3
+1 - = w' 1 W -

- +I -j -3 23

or
(w,.-,) = Dt (w_-G' + '.--J+I -J+1- -

Now substituting into (A.7), we have for an N step

j-1 ~ N-1N-
(W 'D' (w' G. + ] '7 , ., + '

(w -G n --_k'--j-N - -J-N) 1 1J. Dj-N+k-Tj-1-i + -j-1
kjN i=l k---N- i

for all J7 N,2N,3N,...
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Irt mu It ip lI ing by the transpose of the above

- G 1 1 2

G'i =ý: -j-N~ -j-NJ~

d2

+ 2 + I N

+11k=j-N+2

+(w' G' )Tf j-l DA~ N+
- j- N j - , Lk-Nj-N+k-j-[- -3

9
c -N eross terms involving 7' 2' i 6 k) (A.13)-- i' --k'

Consider individually the expected value with respect to the noise source

of the four terms on the right.

I) The first term of (A.13) is (referring to (A.3))

rJ -j-1 2

D Nw S-G' ) 21=
Nk -k N jN -- liIt~- .-

w he re

A'
- .j - N i12

2) Consider the second term of (A.13):

llD.I + , 2 +I + I

722 -
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"referring to (A.9) and (A.1O), we have

N

second term <j
k=1

but recall that
T 2

t (n, -n,S 2i -- i i+l2

2 2 l
ni- 2B2 + n+

There fore
second term < 2NO2

3) Consider the third term of (A.13):

N )N k I H '-j ' ) 4 -](~ Nj~ j -N+k-Zj-1i I - .1-1

Note that only the y' term is correlated with G'_Nthus all the
-J - N

other terms are equal to zero because I,- [0 0o] Thus

third term 2(= T[.Jfl D. _kN)

or

2(W TG TDD .7'

where

[1 3N [k N T
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111 (,xpandcd form we finve

third term 2(n - nj W T DDZj-N j-N+l -4-N _jN)~j

z [100... 0]T

The wt vector drops out because it is uncorrelated with n. and-- N J-N

and is therefore multiplied by zero. Similarly, only the first

term of G' - in non-zero. Thus

third term = -2(n -n, )(n ) zT DDZ

2 2 T= -2(n.N- ) Z DD.Z

2 T= -2a Z DD.Z

Now, making use of (A.0O0), we have

third term < 20 IzTDD.ZI

< 2 CY 1Z~IJ D ,jz

< 2C 2jzDl 'Dz' (A.14)

but

Iiz{I = 1

aI tl~ I~jt

therefore

third term < 2c
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4) Consider the finsl term of (A.13):

(N 2 -N cross terms involving 7',' 1 ik)

Notice that these cross terms can be written in the form

- _ZT(n.-n )(n n, ZTM
I ni+l(k -k+Il _

where M is a matrix corresponding to the product of the D''s. Only
_j

2(N-1) of these terms are non-zero. These are the terms where

li-ki = 1. For each of these terms we have (see (A.14) and following)

_ T c2T
(n. ni )(n -n ) 7 MZ = -C Z MZ

_ i+l k k+l - am-

2

<0

Therefore
fourth term <Z 2(N-l)a2

We have now proven that

2 ,2 w' 2 2

J -I ;i + N

for all j = N,2N,3N,

Now substituting into (A.11), we have the desired result

lim, 2[4a 2 N]jIima]2

i-~-)Mkj -j -j I :S ab(2- ah)

This completes the proof of Theorem 4.
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APPENDIX B

A Qrneral Description of the Algorithm Used in Phase 4.

In the last decade many methods have been developed for minimizing

the quadratic objective function (3.8) subject to linea, inequality con-

straints (3.10) [40-441. One of the most promising is given by Goldfarb.

His algorithm extends Davidon's variable metric technique for constrained

minimization and is based on ideas found in Rosen [41]. When the Hessian

is I, as it is in our case, Goldfarb's algorithm is equivalent to

Rosen's Gradient Projection Algorithm.

The algorithm presented here is specifically designed for the case

of a quadratic objective function (3.8), linear inequality constraints

(3.10), the Hessian matrix of second partial derivatives being equal to

the identity matrix (3.11) and the gradient being equal to z.

The algorithm described in Phase 4, which incorporates the ideas of

Rosen and Gill and Murray [47], was worked out by Kaufman [46].

We want to minimize
k JTkf(zk) = 1(Z z )

subject to the constraints

T kn z, = 1,2, ... 4LN
-mi m

where

T
n n 1 m = 1,2, ... 4LN

A necessary and sufficient condition for f(z*) to be the global minimum

is that there exists an 0 such that
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where
f n1 ,n2 , ... -q)

=q

The columns of N are the q unit normals to the hyperplanes=q

whose intersection is an affine subspace in which z' lies. The itera-

tion equation is thus
k+l k zk

where
T (11.2=I -N (NTN)-)N (B.2)

_q =q -qq ,q

is Rosen's projection operator that projects E into the constraint

manifold. Note that in the unconstrained case q equals zero and P9 =1
-q

k+land thus (B.I) reduces to the one-step Newton method, z = 0.

Substituting for P in (B.1) we have=q

k+l T -1NT k

z =N(N N) Nz2=q =q=q _q-

Ii or equivalently
S~k~l

z =N( (B.3)--q-

where

a (NTN ) -12 (B.4)
- q-q -q

The elements of q correspond to the q active constraints of 2.

The computation of a can be quickly performed as two back solve opera-

Ttions if the following construction is employed. Assume that N is
-q

q : t, then N can be written asN = QP where Q Q = = I and

P is a q X q upper triangular matrix [45]. Thus, (B.4) can be
=q
written as
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IT
=. q=q --

T T
P, Q Q a

_P•Pq(1 =2

Since P is an upper triangular matrix, can be quickly calcu-=q -

lated by using two back solve operations,

=q- -q

and

The addition of constraints to N is done as follows:

Let N± ,nq 2q If N =QP , then
-q =-q

T N T N T T n
q+l;ql -q-q q-q

N q n n

L = -q-q
T T

If we put P in upper triangular form, then=q+1

P
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and
NT N pT PpTp T

=q+_--q+l =q+l=q+l =q=q =q-

7 7TP + p

Thus to calculate P we need to solve for 7 and p where
q+l

T T
=q;- -q-q

and

p =(n lnq _T)

= I 7 T7 )•

When a constraint is dropped the corresponding column must be

deleted from P . If the kth column is deleted, we have q - k ele-=q

ments below the diagonal which must be set to zero. This is easily

done using Given's rotation matrices [45].

The author suggests that interested readers see [40] Section 8

and [46] for a discussion of rates of convergence and operation counts.

I
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APPENDIX C

A PRIGRAhIMED VERSION OF PHASE FOUR

REAL PROCEDURE PHASE4(NpLNjW,X0,RtAvB,C,D)J VALUE NPLNI
INTEGER Ii,LNJ PEAL ARRAY W#XapReA,B,CpDl
~FGINI REAL. TIT2,T3T,t4,LSTARASTARNORM2SNORM2ZI
TNTE.GER OPJt,"AJl,J2,J3,! IL2,13,INDEX.STARTI

& PDIMVCCLNCLN+I))/21

EQUATL MALV1L flMXV,01.2,PDIMV820,EP3ILONCI,251w51
REAL ARRAY HR,.'lNZSNflRM,ALPHA,8ETA[1gMAXLN3,PC1IPDIM2,

jNTEGLP ARRAY NUCISMAXLN);
INTEGER PRCCEDURE IN1(I); INTEGER 1; INIf;(!-1) MOD LN)+1J
TNTEGEP PROCEDURF IN2(I); INTEGER 1;
CASE CUI-I) 0> LN)*I

BEGIN

IN20,-2; I N21V- I; XN 2t72 1,12011

POOLEAN B1,52,
ROOLFAN ARRAY ACTIVE(1,:LN4II
LAPEL STEPISTEP2,STFP3,STEP4,STEP5,STEP6i

& V a REPLACEmENT 0aINTEGER DIVISION

& NINO WB INVERSE
& WIN(IJ)z 'I1J FOR I),RJ
& P(I,J)t P(I+J(J..I)/2) FOR I4ý-J

& INI AND IN2 ARE INUICATOR FUNCTIONS SUCH THAT
& 1N2(J)z -2 IF CCNSTIRAINT 15 1
& IN2(J~z -1 IF CONSTRAINT 1S -1
& IN2(J)z 2 IF CONSTRAINT IS WIXN
& 1N2(J)a I IF CONSTRAINT IS -WIN

k& INI(I) IS AN INDICATOR ARRAY WHICH EQUALS THE ROW NUMBER
9 OF THE COikRESPONDING IN2(I) BLOCKa
& NQCI) IS AN INDOICATOR ARRAY WHICH POINTS TO THE ITH
& ACTIVE CONSTRAINT
& NOPNI(I)a NORM OF THE I-TH1 ROW OF WIN
& ACTIVE(I)a TRUE IF THE I-TH CONSTRAINT IS ACTIVE

& INDEXs THE COLUM'N WHICH IS TO BE ADDED OR DROPPED

STEPI: lOO START101
& COMPOITE HRNH-P
FOR JIVI TO (NIVN-1) DO

so



BEGIN
TtV'.R tJ2 I
FOR KI~N STEP -1 UNTIL CJIVJ4i) DO
T1t'T14. (K) *XO [J1-KI I

HR EJ3 IDT I
END J;

FOR JON- 70 LIJ DO HR [J] oR (JIJ
&COMPUTE ZO* WB*Xfl*H.R

FOR JV1 TO LN DO
BEGIN
TIVHR(J3; JICJ1I;
FOR KID(IF J48N THEN I ELSE J#10N) TO J DV

ZCJIQTII SMOJ-Tif
END J1
&COMPUTE WIN & NORM
NOHIlT1INIQ,/~l T2M30T3
FOR J12 TO LN DO
BEGIN

F~OR KV(IF J~xNTHN ELSE J*41N) TO CJ20J-I) Do

T40-T3*Tl) WINMJIDT4 T21DT2+T4*T4; NORMIJ10SORT(I')p
END J;
9 CALCULATE L
FOR Jul TO LN DO
BEGIN

E L[J]QA(J1wR[J1J L(J+LNIVRCJ3.B(J3j T1~0001 JIOJ~ll
FOR KV1 TO J DO
TIVTI*WIN CJIuK3.HR(K)II

L(J+2*LNlt7CCJ]*TS. L(J+3*LNj0.CD(Jl*TI)f
FOR KVO TO 3 00 ACTIVE[J+K*LN3lvFALSEj

END Ji
STEP21 LSTARVI.0F N1V4*LN;I ~FOR J(;l TO NI DO IF NOT ACTIVEW]4 THEN

&CALCULATE LAMB0A CJ) FOR ALL J NOT IN THE SET OF ACTIVE
& CCNSTRAINTS
BEGIN
JIVINIMJP BIQIN2CJ))
IlVIF A8S(8i)QI THEN -1 ELSE If
IF B1 THEN TIO(I1.LIJI-ZCJ1I)/SCJ1l
ELSE
BEGIN
T3vT2VO010 J2VJ1IFi
FOR KVI To JI DO
BEGIN T40WIN (J2-KJ I
T31OT3*T4*Z (K] T2vT2*T4*S CIll

END KI
T1IDCI1*L (J) -T3)/T2)

ENDI
IF CTI~kEPSILON) AND (TI<LSTAR) THEN
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t, RECCRC) THE. VALUE AND INDEX OF THE MINtMUM, NON"
& NEGATIVE VALUE OF LAMBDA;

HEGIN
LSTANR'TI INDEXOJ1

END,'
END J;

STEP31 IF LETARa1 THEN GO TO STEP61
& ADD THE INDEX JUST FOUND TO THE SET OF ACTIVE CON-
& STP~Al NT S
QvQ4l; STARTVQ; NQEQCJ;NDEXI
I110IF ABS(P'2(INDEX,~xi THEN -LN ELSE LN;
ATVCNE+17ACTIVE tILE]VRE
& UPDATE Z
FCR Jcll TO LN 00 Z !J) VZ [J] 4LSTAR*S tJ3
IF Oat THEN B3EGIN PE13~101 GO TO STEP41 END;
& UPDATE P BY ADDING A COLUMN
BiVIN2(INDEY); N1VG-1.I J3VQ*NI021 13VIN1(INDEX)) T3V,01
FOR J1% TO "Ill DO
BErIN

IF Bi2 THEN
IF Bi THEN TIO.
ELSE TlI;IF 123,13 THEN 0 ELSE WNCI3wI241]/NOPME13)

ELSE
IF BI THEN T4VIF I3>I2 THEN 0 ELSE WINCI2.I3*1]/NORMEI2]
ELSE

BFGIN
Tit'0.0I I 1'VABS(I2-13)
FOR KV1 TO (IF 12,cI3 THEN 12 ELSE 13) DO

TIVTI/(NORm (121*NORM [31 )1
ENDI

IF A8S(B2*8i]w2 THEN Tilu-TI;
FOR KI TO JI DO Tl1OTI-P[K+J2]*PEK+J3]1
T2VP CJ+J31 0Ti/P[IJ+J21 I
T3oT3+.T2*T2 I

END J;
P rQ+J3] VSQRTCl ,0-T3) I

STEP4: FOP JUSTART TO 0 DO
& SOLVE FOR THE ELEMENTS OF BETA
BEGIN

I1.0NQCjJp JiVJ-1. J20J*JI021 T47L[III11
T110TF 1N2(11) THEN T4 ELSE T4/NORMjINl(Ij)3F
FOR K01I TO J! DO TjVTl-PtK+J2)*BETA[Kjl
BETA (JI VT /P (J+J2]I

END J;
ASTARVO0.0
FOR J00 STEP -1 UNTIL I DO
&. CALCULATE THE ELEMENTS OF AjPHA
BEGIN
TIVRETACJ]I JIVJ41W J312J20J*J1021
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FOR KOJI TO 0 DO
63EGIN

ENDI
TIVALPHA(JI17Ti/P (J33 I

&TE:AFINDARUTHEMtMME LEEN OF2:j2 AND REMEMBER 3

IFT14ASTAR THEN BEGIN ASTAROTII INOEXOJI ENDI

BEGIN
T1O-!280 NOR2RMNRM2Z40.TI

FOR K~l TO LN DO

BEGIN

1 3CNQ(K9l I20IN2(13)1 Z11VNIC13)1
T2vIF 12 THEN IF 112J THEN I, ELSE 0
ELSE IF JtmlI THEN WINCIri.-Ji/NORMtIII ELSE 0;
IF ABS(12)nl THEN T20-T2;
TIVTl+T2*ALPHAlK3I

END K;
S CJVl7T1 NDRM2SVNORM2S4T1*T1I

END 31
IF NORM28 <XV*NORM2Z THEN GO TO STEP6
ELSE GO TO STEP21

END IFI
I DROP THE APPROPRIATE COLUMN FROM P
000-1; STARTOINDEX I 1210NOC!NDEXII
I1VIF A83C1N2CI2))%i THEN -LN ELSE LNI
ACTIVE (12.1J]OACTIVE CI21tFALBE1
IF INDExvO'1 THEN GO TO STEP41
FOR JVINDEX TO 0 DO
BEGIN
JIVJ*bIi IIQJ2QJI'J/2) J3vJ2-Jl NQCj30NQtJ11I
FOR KV1 TO INDEX DO PEK*J31OPtK+J211
LUSE A GIVENS ROTATION TO ELIMINATE THE EXTRA ELEMENT

T1VOP tJ+J2) I T2QP (Ji+J2) I
P !J21QT3QS0RT(Ti*T14T2*T2)1
T1VTt/T31 T2VT2/T3I
FOR KOJI TO 0 DO
BEGIN

P(J4121OTi*T4+T2*T3; P[JI+IlJOT2.T4-T1*T3;
END K;

END J)K GO TO STEP41
STEP61 PHASE4'7(ZC1l.kSL'J-HRt11)/WCtII
END OF PHASE41
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